ATOMIZED WATER MIST

Silica dust has been identified as a significant hazard by health and safety organizations and our atomized water mist has proven efficient when binding the most dangerous dust particles; the ones that are not visible. Our dust suppression system produces atomized fog, 10-micron mist droplets, that effectively binds the airborne dust particles while also providing ground-level dust suppression.

What separates our solution from other traditional methods are three main points; it binds the dust particles you can’t see (from 0.1 up to 1000 microns), it concentrates on the working area which prohibits dust to escape by wind and it is fully automated, meaning there is no need for an external pressure pump.

Available for all Brokk remote-controlled demolition robots, the dust suppression offers an ideal solution for combating harmful silica dust in demolition applications. The system is incorporated into the tool mounting, allowing operators to provide silica dust protection with any Brokk attachment.

- Binds hazardous dust particles from 0.1 up to 1000 microns
- Automated system with built-in pressure pump
- Produces 10 micron mist droplets
- Available for all Brokk models
WHEN:
• Whenever there is need to bind silica dust to improve workers environment

APPLICATION:
• For any application to minimize exposure of silica dust

FACT:
• The first system to be incorporated into the tool mounting
• Requires only a fresh water hose
• Built-in pressure pump
• Variable mist depending on pressure and nozzles
• Binds dust particles from 0.1 up to 1000 microns
• Produces 10 microns mist droplets
• Activated from control box
• Uses very little water - no messy slurry on the worksite
• Available for all Brokk models

Note! Not suitable for red hot applications.

Silica particles range from 0.1 to 1,000 microns while traditional methods produce water droplets that are 200 to 1,000 microns in size.

The size and velocity of these larger droplets cause air and silica particles to flow around them in a phenomenon known as the "slipstream effect."